

Current Transducer HAS 75 .. 340-S

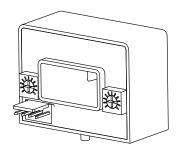
For the electronic measurement of currents: DC, AC, pulsed..., with galvanic isolation between the primary circuit and the secondary circuit.

m

Mass

Standard

El	ectrical data					
	Туре	Primary nominal	Primary curr	•	since	
		current rms	measuring ra	inge date	code	
		I _{PN} (A)	Ι _{ΡΜ} (A)	4.5	004	
	HAS 75-S	75	± 225		294	
	HAS 150-S	150	± 450		293	
	HAS 220-S	220	± 660		349	
	HAS 260-S	260	± 780		159	
v	HAS 340-S	340	± 900		359	
V _c	Supply voltage (± 5			± 15 ± 15	V	
I _c	Current consumption			-	mA	
V _{OUT}	Output voltage (Anal			± 4 V ± 40 100	mV Ω	
R _{out}	Output internal resis Load resistance ²⁾	tance appr	UX	> 1	kΩ	
R _L	Isolation resistance			> 1000	MΩ	
R _{IS}	Isolation resistance			> 1000	1012.2	
Accuracy - Dynamic performance data						
Ac	curacy - Dynami	ic performance	data			
Ac X	ccuracy - Dynami Accuracy @ I _{PN} , T _A =			< ± 1	% of I _{PN}	
Χ ε _ι	Accuracy @ I_{PN} , T_{A} = Linearity error ³⁾ (0	= 25°C (excluding of ± I _{PN})		<±1 <±1	% of I _{PN} % of I _{PN}	
Χ ε _ι	Accuracy @ I _{PN} , T _A =	= 25°C (excluding of ± I _{PN})				
Χ ε _ι V _{οε}	Accuracy @ I_{PN} , T_{A} = Linearity error ³⁾ (0	= 25°C (excluding of $\pm \mathbf{I}_{PN}$) age, $\mathbf{T}_{A} = 25^{\circ}C$		< ± 1	% of $\mathbf{I}_{_{\mathrm{PN}}}$	
Χ ε _ι	Accuracy @ I_{PN} , $T_A =$ Linearity error ³⁾ (0 Electrical offset volta	= 25°C (excluding of $\pm \mathbf{I}_{PN}$) age, $\mathbf{T}_{A} = 25^{\circ}C$	ffset)	< ± 1	% of $\mathbf{I}_{_{\mathrm{PN}}}$	
Х Е _L V _{OE} V _{OH} TCV _{OE}	Accuracy @ I_{PN} , T_{A} = Linearity error ³⁾ (0 Electrical offset volta Hysteresis offset volta Temperature coeffici	= 25°C (excluding of $\pm I_{PN}$) age, $T_A = 25°C$ tage @ $I_P = 0$, after an excurs ient of V_{OE}	ffset) sion of 1 x I _{PN}	< ± 1 < ± 20	% of I _{PN} mV	
Х Е _L V _{OE} V _{OH} TCV _{OE}	Accuracy @ I_{PN} , T_{A} = Linearity error ³⁾ (0 Electrical offset volta Hysteresis offset vol Temperature coeffici	= 25°C (excluding of $\pm I_{PN}$) age, $T_A = 25°C$ tage @ $I_P = 0$, after an excurs tient of V_{OE} tient of V_{OUT} (% of re	ffset) sion of 1 x I _{PN}	< ± 1 < ± 20 < ± 20 < ± 1 < ± 0.1	% of I _{PN} mV mV	
Х Е _L V _{OE} V _{OH} TCV _{OE}	Accuracy @ I _{PN} , T _A = Linearity error ³⁾ (0 Electrical offset volta Hysteresis offset vol Temperature coeffici Temperature coeffici Response time to 90	= 25°C (excluding of $\pm \mathbf{I}_{PN}$) age, $\mathbf{T}_{A} = 25^{\circ}$ C tage @ $\mathbf{I}_{P} = 0$, after an excurs tient of \mathbf{V}_{OE} tient of \mathbf{V}_{OUT} (% of re 0 % of \mathbf{I}_{PN} step	ffset) sion of 1 x I _{PN}	< ± 1 < ± 20 < ± 20 < ± 1	% of I _{PN} mV mV mV/K	
Х ε _L V _{OE} V _{OH} TCV _{OE} TCV _{OU} t _r di/dt	Accuracy @ I _{PN} , T _A = Linearity error ³⁾ (0 Electrical offset volta Hysteresis offset vol Temperature coeffici Response time to 90 di/dt accurately follow	= 25°C (excluding of $\pm \mathbf{I}_{PN}$) age, $\mathbf{T}_{A} = 25^{\circ}C$ tage @ $\mathbf{I}_{P} = 0$, after an excurs ient of \mathbf{V}_{OE} ient of \mathbf{V}_{OUT} (% of re 0 % of \mathbf{I}_{PN} step wed	ffset) sion of 1 x I _{PN}	< ± 1 < ± 20 < ± 20 < ± 1 < ± 0.1 < 3 > 50	% of I _{PN} mV mV/K %/K µs A/µs	
Х ε _L V _{OE} V _{OH} TCV _{OE} TCV _{OU} t _r	Accuracy @ I _{PN} , T _A = Linearity error ³⁾ (0 Electrical offset volta Hysteresis offset vol Temperature coeffici Temperature coeffici Response time to 90	= 25°C (excluding of $\pm \mathbf{I}_{PN}$) age, $\mathbf{T}_{A} = 25^{\circ}C$ tage @ $\mathbf{I}_{P} = 0$, after an excurs ient of \mathbf{V}_{OE} ient of \mathbf{V}_{OUT} (% of re 0 % of \mathbf{I}_{PN} step wed	ffset) sion of 1 x I _{PN}	< ± 1 < ± 20 < ± 20 < ± 1 < ± 0.1 < 3	% of I _{PN} mV mV/K %/K μs	
Х ε _L V _{OE} V _{OH} TCV _{OE} TCV _{OU} t _r di/dt BW	Accuracy @ I _{PN} , T _A = Linearity error ³⁾ (0 Electrical offset volta Hysteresis offset vol Temperature coeffici Response time to 90 di/dt accurately follow	= 25°C (excluding of $\pm \mathbf{I}_{PN}$) age, $\mathbf{T}_{A} = 25^{\circ}C$ tage @ $\mathbf{I}_{P} = 0$, after an excurs ient of \mathbf{V}_{OE} ient of \mathbf{V}_{OUT} (% of re 0 % of \mathbf{I}_{PN} step wed	ffset) sion of 1 x I _{PN}	< ± 1 < ± 20 < ± 20 < ± 1 < ± 0.1 < 3 > 50	% of I _{PN} mV mV/K %/K µs A/µs	
Х ε _ι V _{ое} V _{он} TCV _{ое} TCV _{оυ} t _r di/dt BW	Accuracy @ I _{PN} , T _A = Linearity error ³⁾ (0 Electrical offset volta Hysteresis offset vol Temperature coeffici Temperature coeffici Response time to 90 di/dt accurately follow Frequency bandwidt	= 25°C (excluding of ± I_{PN}) age, $T_A = 25°C$ tage @ $I_P = 0$, after an excurs ient of V_{OE} ient of V_{OUT} (% of re 0 % of I_{PN} step wed th ⁴) (- 3 dB)	ffset) sion of 1 x I _{PN}	< ± 1 < ± 20 < ± 20 < ± 1 < ± 0.1 < 3 > 50	% of I _{PN} mV mV/K %/K µs A/µs	


<u>Notes</u>: ¹⁾ Operating at \pm 12 V \leq **V**_c $< \pm$ 15 V will reduce the measuring range

²⁾ If the customer uses 1 k Ω of the load resistor, the primary current has to be limited as the nominal. To measure the full defined measuring range, the load resistor should be at minimum 10 k Ω

³⁾ Linearity data exclude the electrical offset

⁴⁾ Please refer to derating curves in the technical file to avoid excessive core heating at high frequency.

I_{PN} = 75 .. 340 A

Features

- Hall effect measuring principle
- Extended measuring range (3 x I_{PN})
- Isolated plastic case made of polycarbonate PBT recognized according to UL 94-V0.

Advantages

- Easy mounting
- Small size and space saving
- Low power consumption
- Only one design for wide current ratings range
- High immunity to external interference.

Applications

- AC variable speed drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies
 (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application domain

Industrial.

g

60

EN 50178: 1997

Current Transducer HAS 75 .. 340-S

Isolation characteristics					
V _d	Rms voltage for AC insulation test, 50 Hz, 1 min	3.6	kV		
Ŷ	Impulse withstand voltage 1.2/50 µs	> 6.6	kV		
		Min			
dCp	Creepage distance	7.08	mm		
dCl	Clearance	6.23	mm		
СТІ	Comparative Tracking Index (group IIIa)	275			

Applications examples

According to EN 50178 and IEC 61010-1 standards and following conditions:

- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field

	EN 50178	IEC 61010-1
dCp, dCl, \hat{V}_{w}	Rated insulation voltage	Nominal voltage
Basic insulation	600 V	600 V
Reinforced insulation	300 V	300 V

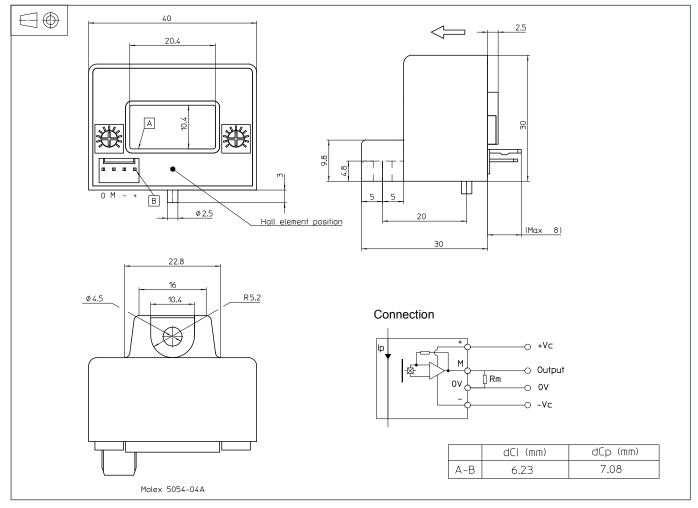
Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions HAS 75 .. 340-S (in mm)

Mechanical characteristics

- General tolerance •
- ± 0.5 mm
- Transducer fastening •
- 1 hole Ø 4.5 mm
- Recommended fastening torque 0.75 Nm (± 10 %)
- Connection of secondary
- 1 M4 steel screw

Molex 5045-04A

Remarks

- $\mathbf{V}_{_{OUT}}$ is positive when $\mathbf{I}_{_{P}}$ flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.