

## **Current Transducer LTS 25-NP**

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).







# $I_{PN} = 8 - 12 - 25 A$



#### **Electrical data**

| I <sub>PN</sub>                                             | Primary nominal r.m.s. current                       | 25                       | At                                 |
|-------------------------------------------------------------|------------------------------------------------------|--------------------------|------------------------------------|
| I <sub>P</sub>                                              | Primary current, measuring range                     | 0 ± 80                   | At                                 |
| <b>V</b> <sub>OUT</sub>                                     | Analog output voltage @ I <sub>P</sub>               | $2.5 \pm (0.62)$         | $5 \cdot I_p / I_{pN}) V$          |
| 00.                                                         | $I_p = 0$                                            | 2.5 1)                   | · · · · V                          |
| $N_s$                                                       | Number of secondary turns (± 0.1 %)                  | 2000                     |                                    |
| R.                                                          | Load resistance                                      | ≥ 2                      | kΩ                                 |
| $\mathbf{R}_{\scriptscriptstyle IM}^{\scriptscriptstyle T}$ | Internal measuring resistance (± 0.5 %)              | 50                       | Ω                                  |
| TCR                                                         | Thermal drift of <b>R</b> <sub>M</sub>               | < 50                     | ppm/K                              |
| $\mathbf{V}_{\mathtt{c}}$                                   | Supply voltage (± 5 %)                               | 5                        | V                                  |
| Ic                                                          | Current consumption @ $V_c = 5 \text{ V}$ Typ        | $20 + I_S^{(2)} + (V_O)$ | $_{\rm UT}/\mathbf{R}_{\rm L})$ mA |
| <b>V</b> <sub>d</sub>                                       | R.m.s. voltage for AC isolation test, 50/60 Hz, 1 mn | 3                        | kV                                 |
| V <sub>b</sub>                                              | R.m.s. rated voltage                                 | 525 <sup>3)</sup>        | V                                  |

## **Accuracy - Dynamic performance data**

| X                                   | Accuracy @ $I_{PN}$ , $T_A = 25^{\circ}C$                                                                            | ± 0.2 | 2     | %     |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------|-------|-------|
|                                     | Accuracy with $\mathbf{R}_{\text{IM}} \otimes \mathbf{I}_{\text{PN}}$ , $\mathbf{T}_{\text{A}} = 25^{\circ}\text{C}$ | ± 0.7 | 7     | %     |
| $\mathbf{E}_{\scriptscriptstyle L}$ | Linearity                                                                                                            | < 0.  | 1     | %     |
|                                     |                                                                                                                      | Тур   | Max   |       |
| TCV                                 | Thermal drift of $V_{OUT} @ I_P = 0$ - 10°C + 85°C                                                                   | 50    | 100   | ppm/K |
| TCE <sub>G</sub>                    | Thermal drift of the gain - 10°C + 85°C                                                                              |       | 50 4) | ppm/K |
| V <sub>OM</sub>                     | Residual voltage @ $I_p$ = 0,after an overload of 3 x $I_{pN}$                                                       |       | ± 0.5 | mV    |
|                                     | 5 x I <sub>PN</sub>                                                                                                  |       | ± 2.0 | mV    |
|                                     | 10 x I <sub>PN</sub>                                                                                                 |       | ± 2.0 | mV    |
| <b>t</b> <sub>ra</sub>              | Reaction time @ 10 % of I <sub>PN</sub>                                                                              | < 50  | )     | ns    |
| t,                                  | Response time @ 90 % of I <sub>PN</sub>                                                                              | < 40  | 0     | ns    |
| di/dt                               | di/dt accurately followed                                                                                            | > 60  | )     | A/µs  |
| f                                   | Frequency bandwidth (0 0.5 dB)                                                                                       | DC .  | . 100 | kHz   |
|                                     | (- 0.5 1 dB)                                                                                                         | DC .  | . 200 | kHz   |

#### General data

| $T_{A}$        | Ambient operating temperature | - 10 + 85  | °C |
|----------------|-------------------------------|------------|----|
| T <sub>s</sub> | Ambient storage temperature   | - 25 + 100 | °C |
| m              | Mass                          | 10         | g  |
|                | Standards                     | EN 50178   |    |
|                |                               | EN 60950   |    |
|                |                               |            |    |

Notes : 1) Absolute value @  $T_A = 25$ °C,  $2.475 < V_{OUT} < 2.525$ 

- <sup>2)</sup> Please see the operation principle on the other side
- 3) Pollution class 2, Overvoltage category III
- 4) Only due to TCR IM

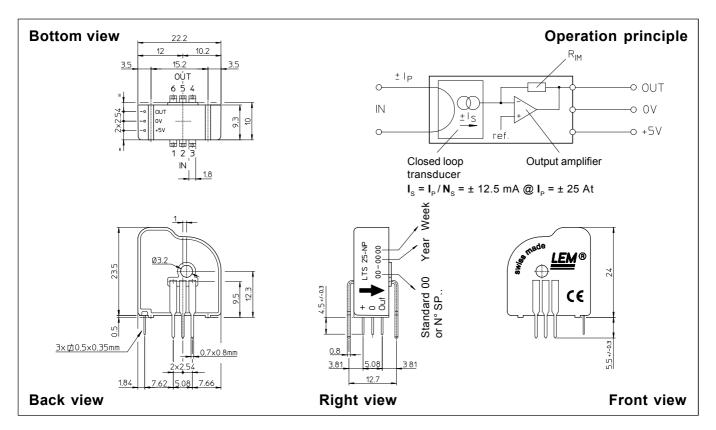
#### **Features**

- Closed loop (compensated) multirange current transducer using the Hall effect
- · Unipolar voltage supply
- Insulated plastic case recognized according to UL 94-V0
- Compact design for PCB mounting
- Incorporated measuring resistance
- Extended measuring range.

#### **Advantages**

- Excellent accuracy
- Very good linearity
- · Very low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

#### **Applications**


- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Copyright protected.

000209/7



## **Dimensions** LTS 25-NP (in mm. 1 mm = 0.0394 inch)



| Number of primary turns | Primary nominal r.m.s. current $I_{PN}$ [A] | Nominal output voltage $\mathbf{V}_{\text{OUT}}$ [V] | Primary resistance $\mathbf{R}_{_{\mathrm{P}}}$ [ $\mathrm{m}\Omega$ ] | Primary insertion inductance <b>L</b> <sub>P</sub> [ µH ] | Recommended connections                         |
|-------------------------|---------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------|
| 1                       | ± 25                                        | 2.5 ± 0.625                                          | 0.18                                                                   | 0.013                                                     | 6 5 4 OUT O O O O                               |
| 2                       | ± 12                                        | 2.5 ± 0.600                                          | 0.81                                                                   | 0.05                                                      | 6 5 4 OUT O 0 1 1 1 2 3                         |
| 3                       | ± 8                                         | 2.5 ± 0.600                                          | 1.62                                                                   | 0.12                                                      | 6 5 4 OUT O O O O O O O O O O O O O O O O O O O |

### **Mechanical characteristics**

General toleranceFastening & connection of primary

Recommended PCB hole

Fastening & connection of se

• Fastening & connection of secondary Recommended PCB hole

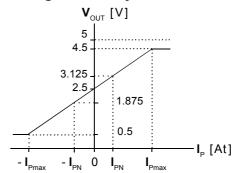
• Additional primary through-hole

#### ± 0.2 mm

6 pins 0.7 x 0.8 mm

1.3 mm

3 pins 0.5 x 0.35 mm


0.8 mm

Ø 3.2 mm

## Remark

•  $\mathbf{V}_{\text{OUT}}$  is positive when  $\mathbf{I}_{\text{P}}$  flows from terminals 1, 2, 3 to terminals 6, 5, 4

## **Output Voltage - Primary Current**



LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.