

Current Transducer LTS 15-NP

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data Αt Primary nominal r.m.s. current 15 I_{PN} Primary current, measuring range I_{p} 0 .. ± 45 Αt $2.5 \pm (0.625 \cdot \mathbf{I}_{P}/\mathbf{I}_{PN}) V$ $\mathbf{V}_{\mathsf{OUT}}$ Analog output voltage @ I, 2.5 1) \mathbf{N}_{s} 2000 Number of secondary turns (± 0.1 %) $\mathbf{R}_{\scriptscriptstyle L}$ Load resistance ≥ 2 $k\Omega$ \mathbf{R}_{IM} Internal measuring resistance (± 0.5 %) 83.33 Ω TCR Thermal drift of $\mathbf{R}_{\scriptscriptstyle \mathrm{IM}}$ < 50 ppm/K Supply voltage (± 5 %) \mathbf{V}_{C} Current consumption @ $V_c = 5 \text{ V}$ Тур $20 + I_S^{2)} + (V_{OUT}/R_L) mA$ R.m.s. voltage for AC isolation test, 50/60 Hz, 1 mn 3 kV R.m.s. rated voltage 525³⁾

Accuracy - Dynamic performance data							
X	Accuracy @ I _{PN} , T _A = 25°C			± 0.2			
	Accuracy with $\mathbf{R}_{\text{IM}} \otimes \mathbf{I}_{\text{PN}}$, $\mathbf{T}_{\text{A}} = 25^{\circ}\text{C}$			± 0.7			
$\mathbf{\epsilon}_{\scriptscriptstyle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	Linearity			1	%		
			Тур	Max			
TCV	Thermal drift of V OUT @ IP = 0	- 10°C + 85°C	100	150	ppm/K		
TCE _G	Thermal drift of the gain	- 10°C + 85°C		50 ⁴⁾	ppm/K		
V _{OM}	Residual voltage @ $I_p = 0$, after an overload of 3 x I_{pN}			± 0.5	mV		
		5 x I _{PN}		± 2.0	mV		
		10 x I _{PN}		± 2.0	mV		
t _{ra}	Reaction time @ 10 % of I _{PN}		< 50)	ns		
t,	Response time @ 90 % of I _{PN}			< 400			
di/dt	di/dt accurately followed		> 35	5	A/µs		
f	Frequency bandwidth (0 0.5 dB)			100	kHz		
	(- 0.5 1 dB)	DC	200	kHz		

	General data								
T _△	Ambient operating temperature	- 10 + 85	°C						
T _s	Ambient storage temperature	- 25 + 100	°C						
m	Mass	10	g						
	Standards	EN 50178							
		EN 60950							

$I_{PN} = 5 - 7.5 - 15 A$

Features

- Closed loop (compensated) multirange current transducer using the Hall effect
- · Unipolar voltage supply
- Compact design for PCB mounting
- Insulated plastic case recognized according to UL 94-V0
- Incorporated measuring resistance
- Extended measuring range.

Advantages

- Excellent accuracy
- Very good linearity
- Very low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

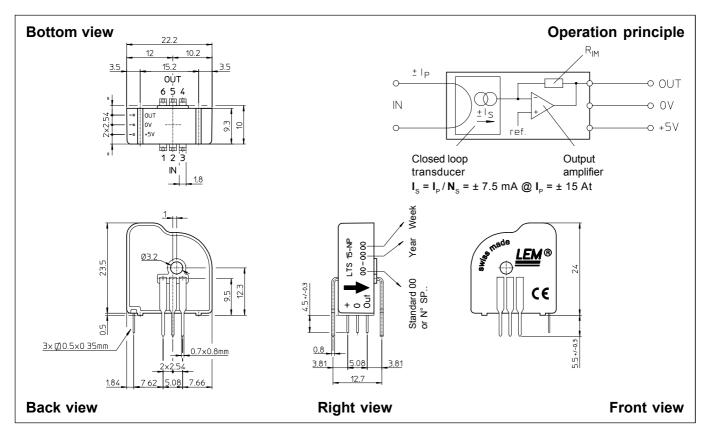
- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Copyright protected.

_{OUT} < 2.525

Notes: 1) Absolute value @ T_A = 25°C, 2.475 < V_{OUT} < 2.525

²⁾ Please see the operation principle on the other side


3) Pollution class 2, Overvoltage category III

4) Only due to TCR_{IM}

000209/3

Dimensions LTS 15-NP (in mm. 1 mm = 0.0394 inch)

Number of primary turns	Primary nominal r.m.s. current I _{PN} [A]	Nominal output voltage \mathbf{V}_{OUT} [V]	Primary resistance \mathbf{R}_{P} [$\mathrm{m}\Omega$]	Primary insertion inductance L _P [μH]	Recommended connections
1	± 15	2.5 ± 0.625	0.18	0.013	6 5 4 OUT O
2	± 7.5	2.5 ± 0.625	0.81	0.05	6 5 4 OUT O O O O O O O O O O O O O O O O O O O
3	± 5	2.5 ± 0.625	1.62	0.12	6 5 4 OUT 0 0 IN 1 2 3

Mechanical characteristics

General tolerance

• Fastening & connection of primary Recommended PCB hole

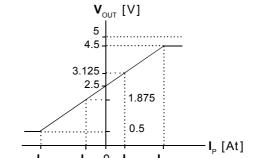
• Fastening & connection of secondary Recommended PCB hole

• Additional primary through-hole

± 0.2 mm

6 pins 0.7 x 0.8 mm

1.3 mm


3 pins $0.5 \times 0.35 \, \text{mm}$

0.8 mm

Ø 3.2 mm

Remark

• \mathbf{V}_{OUT} is positive when \mathbf{I}_{P} flows from terminals 1, 2, 3 to terminals 6, 5, 4.

Output Voltage - Primary Current

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.