For the electronic measurement of currents : DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Ele	ectrical data			
I _{PN}	Primary nominal r.m.s. current	6		At
I _P	Primary current, measuring range	0±19.2 At		At
V _{оит}	Analog output voltage @ I	2.5 ±	(0.625	
001	$I_{p} = 0$	2.5 ¹		V
Ns	Number of secondary turns (± 0.1 %)	2000	0	
R	Load resistance	≥ 2		kΩ
R _{IM}	Internal measuring resistance (± 0.5 %)	208.33		Ω
ICR ^{III}	Thermal drift of \mathbf{R}_{IM}	< 50		ppm/K
/ _c	Supply voltage (± 5 %)	5		V
с	Current consumption @ $V_c = 5 V$ Typ	$20 + I_{S}^{2} + (V_{OUT}/R_{L}) mA$		
Ĭ _d	R.m.s. voltage for AC isolation test, 50/60 Hz, 1 mn	3		kV
/ _b	R.m.s. rated voltage		525 ³⁾	
Ac	curacy - Dynamic performance data			
х	Accuracy @ I_{PN} , $T_{A} = 25^{\circ}C$		± 0.2	
X	Accuracy with $\mathbf{R}_{IM} @ \mathbf{I}_{PN}$, $\mathbf{T}_{A} = 25^{\circ}C$		± 0.7	
EL	Linearity		< 0.1	
		Тур	Max	
ICV OUT	Thermal drift of $\mathbf{V}_{OUT} \otimes \mathbf{I}_{P} = 0$ - 10°C + 85°C	200	300	ppm/K
TCE _G	Thermal drift of the gain -10° C + 85°C		50 ⁴⁾	ppm/K
V _{oM}	Residual voltage @ I_{P} = 0,after an overload of 3 x I_{PN}		± 0.5	mV
	5 x I _{PN}		± 2.0	mV
	10 x I _{PN}		± 2.0	mV
ra	Reaction time @ 10 % of I _{PN}	< 50		ns
t,	Response time @ 90 % of I _{PN}	< 400		ns
di/dt	di/dt accurately followed	> 15		A/µs
f	Frequency bandwidth (0 0.5 dB)	DC .	. 100	kHz
	(- 0.5 1 dB)	DC.	. 200	kHz

G	General data							
T	Ambient operating temperature	- 10 + 85	°C					
T _s	Ambient storage temperature	- 25 + 100	°C					
m	Mass	10	g					
	Standards	EN 50178						
		EN 60950						

2 - 3 - 6 A

Features

I_{PN}

- Closed loop (compensated) multirange current transducer using the Hall effect
- Unipolar voltage supply
- Compact design for PCB mounting
- Insulated plastic case recognized according to UL 94-V0
- Incorporated measuring resistance
- Extended measuring range.

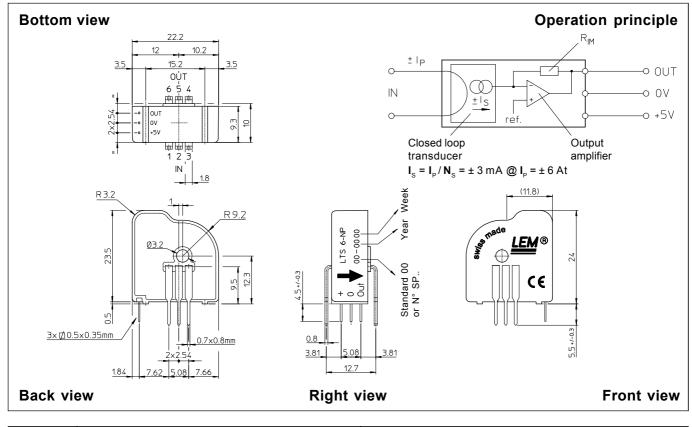
Advantages

- Excellent accuracy
- Very good linearity
- Very low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

<u>Notes</u> : ¹⁾ Absolute value **(a)** $T_A = 25^{\circ}C$, 2.475 < $V_{OUT} < 2.525$

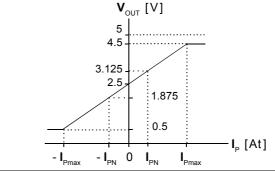

- $^{\rm 2)}$ Please see the operation principle on the other side
- ³⁾ Pollution class 2, Overvoltage category III

 $^{\scriptscriptstyle 4)}$ Only due to $\textbf{TCR}_{\scriptscriptstyle \text{IM}}$

Copyright protected.

Dimensions LTS 6-NP (in mm. 1 mm = 0.0394 inch)

Number of primary turns	Primary nominal r.m.s. current I _{PN} [A]	Nominal output voltage V _{out} [V]	Primary resistance R _P [mΩ]	Primary insertion inductance L _P [µH]	Recommended connections
1	± 6	2.5 ± 0.625	0.18	0.013	6 5 4 OUT 0 0 0 0 1N 1 2 3
2	± 3	2.5 ± 0.625	0.81	0.05	6 5 4 OUT 0 0 0 IN 1 2 3
3	± 2	2.5 ± 0.625	1.62	0.12	6 5 4 OUT 0 0 0 IN 1 2 3


Mechanical characteristics

- General tolerance
- Fastening & connection of primary 6 pins 0.7 x 0.8 mm Recommended PCB hole 1.3 mm
- Fastening & connection of secondary 3 pins 0.5 x 0.35 mm Recommended PCB hole 0.8 mm

± 0.2 mm

• Additional primary through-hole Ø 3.2 mm

Output Voltage - Primary Current

Remark

• V_{OUT} is positive when I_{p} flows from terminals 1, 2, 3 to terminals 6, 5, 4.

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.